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Abstract—Unsteady heat transfer in a macroscopically isotropic and homogeneous particulate mixture is
considered with the help of a general approach based on averaging the local heat conduction equations
valid in mixture phases over a configurational ensemble of particles and on ideas of the self-consistent field
theory. A closed set of equations for the mean temperatures of the phases is derived by neglecting the
direct heat transport through contacts with contiguous particles. Both mean heat flux and interphase
exchange are shown to be essentially frequency dependent so that the effective heat conductivity deviates
considerably from its stationary value. This is representative of the relaxation processes influencing unsteady
heat transfer and generates corresponding dispersion effects. Under the weak non-stationary condition the
set can be reduced to either a single ‘equivalent’ equation belonging to the elliptic type or a system of two
simplified equations whose reliability has been discussed in detail previously on the example of heating a
motionless granular bed through a flat boundary.

1. INTRODUCTION

THE METHODS available for describing an average
unsteady transfer process in heterogeneous media rely
on either the usual single-phase parabolic heat con-
duction equation involving some effective heat con-
ductivity or a phenomenological system of separate
transport equations for each phase of a medium with
time-independent  interphase  heat  exchange
coefficients. That the former approach is entirely
inconsistent under non-stationary conditions has been
experimentally demonstrated in a convincing way as
early as in 1959 [1, 2]. The latter approach amounts
to extending a quasi-stationary scheme to a region of
heat transfer time scales for which the system as well
as its solutions do not obviously hold. A thorough
review of recent advances of a two-phase model in
problems of practical importance is to be found in
refs. [3-5]. Following ref. [3] the phenomenological
system is to be written in the form

coe(0/0t+v4V)1, = —Vq—o,
c p(0/0t+v V)T, =0,
k = (A*/4a*)A>,
M

where A* is the effective heat conductivity, q and ¢ play
the roles of mean heat flux and mean heat exchange
between the phases per unit volume of a granular
medium, respectively. The parameter A is understood
to represent a constant independent of physical prop-
erties, with 4 = 2 according to ref. [3]. It is important
that transient heat flux through the assemblage of
contacting particles is neglected so that the second
equation in set (1) contains no conduction term.

q= _A*VTO’ g = k(TO_Tl)’

The quantities A* and & are thought of as constants
to be determined from experimental data relating to
steady or quasi-steady processes. It is just such an
assumption which makes set (1) inadequate for the
transfer physics because of the full neglect of relax-
ation of both an instantaneous value of the mean
heat flux to a given mean temperature gradient and a
current mean temperature of the dispersed phase to
that of the continuous matrix. The physical sig-
nificance of the latter relaxation processes has been
explained in refs. [6, 7] whereas implications con-
nected with the former have been pointed out in ref.
[8]. These processes result in the discrepancies
between the conclusions following from set (1) and
experiments. Nevertheless, using set (1) for particular
unsteady problems sometimes leads to satisfactory
consequences and, anyhow, there is no other alter-
native but to employ set (1) for lack of a more sound
foundation of the non-stationary heat transfer theory
for granular media.

Thus, a two-fold task of principal nature arises. It
seems to be necessary, firstly, to provide for deter-
mining a reasonable basis for theoretical description
of the relaxation processes and the resulting dis-
persion effects accompanying unsteady heat transport
in granular and other heterogeneous systems.
Secondly, it is desirable to find conditions and to
elucidate reasons of approximate validity of set (1) in
many essentially unsteady situations.

The study of both these problems constitutes the
main purpose of this paper. The first problem is suc-
cessfully resolved with the help of the technique of
averaging over the ensemble of permissible con-
figurations of dispersed particles together with the
methods of the theory of self-consistent fields put
forward in refs. [9, 10]. This results in a new closed
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parameter in equations (1) and (32)
radius of particles

heat capacity per unit volume

mean temperature gradient
quantities defined in equation (15)
interphase heat exchange

interphase heat exchange coefficient

» N; parameters defined in equation (19)

g mmo s
Q

q mean heat flux

r, R dimensional and dimensionless
coordinate vectors

$ parameter introduced in equation (8)

T relaxation time scale

v mean velocity.

Greek symbols

2 =/2

B = A

£ =1-p

K thermal conductivity
A heat conductivity

NOMENCLATURE

u =1,/1

p dispersed phase concentration by volume

a interphase heat exchange

T temperature

X dimensionless thickness of a layer filled

with pure matrix material

w Fourier transform parameter.
Subscripts

0 ambient medium (matrix)

1 dispersed phase

s stationary values.
Superscripts

* perturbations of mean temperature

caused by the test sphere

connected with the test sphere

field inside the test sphere

0 values of mean temperature and its
gradient at the test sphere centre.

system of averaged heat transfer equations attributed
to two co-existing continua which model continuous
and dispersed phases. The second problem is settled
by means of reducing these equations to the form
specific for those in set (1) and comparing the
coefficients involved.

A mixture consisting of identical spherical particles
immersed into an ambient continuous medium is pri-
marily considered as a representative example of
granular systems in a broad sense. The main con-
clusions are shown, however, to remain true for dis-
perse and heterogeneous media of more complicated
structure and for mass transfer processes.

2. BASIC EQUATIONS

The averaged equations for the mean temperatures
of the continuous and dispersed phases of a macro-
scopically homogeneous and isotropic medium con-
taining identical spherical particles are to be derived
with the help of the ensemble averaging procedure
developed in ref. [9]. They happen to be of the same
form as the equations in set (1) providing q and o are
defined in the following manner:

: N4 S0 ey
q= —4i,V1—(4,—4y) &?J; ; V, (¢, r|r’) dr

_ 3
= tnd®

j V(e rir) dr’, 1 =et,+p7,.
[r—r|<a

@

Here the number concentration of particles appearing
in the corresponding formulae in ref. [9] is expressed

through the concentration of the dispersed phase by
volume, and the functions 7(¢, r{r’) and q(z, r|r") rep-
resent the mean temperature and heat flux within a
single test sphere. The introduction of these quantities
implies averaging over the ensemble of possible
arrangements of all the neighbouring particles com-
patible with the presence of the centre of the test
sphere at the point r’.

For reasons given below, it is convenient to intro-
duce new dimensionless coordinates and time by using

scales a and a?/k,
R=a'vr, Fo=(a*/k)'t, 3)

and, after that, to apply the Fourier transform with
respect to the dimensionless time Fo. Then, from equa-
tions (1) and (2) the following equations, governing
non-stationary heat transfer in the granular medium
under study, are received in terms of the Fourier trans-
formations of the unknown variables:

K v Vv
Co ( Siw+ V) Ty = — L +4,
a a a

K, . ¥
c,p(;}%twﬁ—;‘V)rl = —h, 4
where

g P [ v R AR
qR) = — Ve (4, 40)4ML Vii(L RIR) dR

AR) = —

Ny
PA Y Agf(L,RIR)dR, X=R—R’
4na Yy <1

(%)
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(for simplicity, the same notation is retained for Four-
ier transformations as for corresponding original
quantities).

The closure of the averaged field equations in set
(1) is ensured, as is clearly seen from set (2), by
expressing the conditioned mean quantities involved
in the integrals in set (2) in terms of the unconditioned
unknown variables t, and t,. A mathematical prob-
lem whose solution enables one to do so has been
discussed in detail in ref. [10]. If the Peclet number
for one particle is small compared with unity, then it
is allowable, when employing a coordinate system
with an origin at the test particle centre, to neglect
terms due to convective transport. Then the problem
has to be stated as that of heat conduction both inside
and outside the test sphere under the condition of con-
tinuity of the temperature and heat flux at its surface.
When the conditional ensemble averaging is perfor-
med, the test sphere is formally to be regarded as
immersed in some fictitious continuum, the properties
of which coincide with those of the granular medium
far away from the test sphere but depend on the dis-
tance from its surface in its vicinity. The character of
this dependence is dictated by the manner in which
the particles are packed in the medium, that is, by
the form of the binary correlation function which
determines the relative positions of particles forming
a pair.

The solution of such a problem under steady con-
ditions has been undertaken for randomly packed
disperse systems in ref. [10} and a good agreement
with the available experimental data on the effective
stationary conductivity has been reported. Con-
sideration of rather a complicated dependence of the
properties of the fictitious medium on coordinates
requires a cumbersome numerical calculation to be
carried out while solving the test particle problem.
What is worse, the calculation may be expected to be
valid rigorously only when applied to granular media
of certain particular structure which is described by
the binary correlation function having been used.
In order to simplify the matter and to make the
calculation applicable to a broader range of disperse
and heterogeneous systems, it is reasonable to have
recourse to a suitable semi-empirical model. Such a
model may consist of an assumption that the test
sphere is surrounded by a homogeneous fictitious
medium separated from the sphere surface by a con-
centric spherical layer filled with pure material of con-
tinuous phase. The thickness ya of this layer is
unknown beforehand and the coefficient y plays the
role of an empirical parameter to be found afterwards
by comparing theoretical results with experimental
evidence. In what follows this model is suggested with-
out further comments.

Thus, the ordinary heat conduction equations are
valid inside the test sphere and within the concentric
layer. Their Fourier transformations are to be written
in the form, the independent variables from equations
(3) being used,
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it = Af, io(k,/ky)T = A1’ 6

where 7 and 7 are understood to be mean tem-
peratures for X <1 and for 1 < X < 147, respec-
tively.

The properties of the fictitious medium when
X > 1+ are uniform and coincide with those of the
granular medium as a whole. It means that heat trans-
port in the region indicated is governed by the equa-
tions in set (1). In order to make them closed, one
needs to relate q and ¢ to the unknown variables.
Under steady conditions ¢ and q are proportional to
1=1,=1, and Vr = Vz, = V1, respectively, scalar
coefficients of proportionality to be calculated with
the help of self-consistency equations, that is, by
means of comparing the above linear representations
for q and ¢ with those resulting from definitions in
equations (2). In a general case of non-stationary heat
transfer the situation is more difficult since q and ¢
must be linear functions not only of the mean tem-
perature and its gradient but also of their time deriva-
tives [10]. This difficulty can be avoided, however, by
using the Fourier transform when linear relations of
the former type are preserved, the coeflicients of pro-
portionality being now thought of as dependent on iw
too. For the quantities in set (4) it will be thus assumed
that

q= —{Aa)Vr, L= Bi,, h= —ivp(i ja ) ur.

(7

By substituting equation (7) into equations (4) and
neglecting a convective contribution to the heat flux in
the coordinate system connected with the test particle,
one gets Fourler transformations of averaged equa-
tions governing unsteady heat transfer in the fictitious
medium

sft=A1, ety =(1—pwr,

2.5 f_ o
B TP

Equations of the same type govern non-stationary
heat transfer in the original granular medium as well.
1t follows from them that |s?| ~ /=2, /= L/a, L being
the linear scale of the mean temperature fields. Evi-
dently, a continual description of heat transfer is
adequate only if that scale is much larger than the
scale ¢ of the inner structure of the granular medium,
that is, if |s?| <« 1. On the contrary, the linear scale of
perturbations induced by the test particle in the fields
of mean temperature equals a so that the term on the
right-hand side of the first equation in set (8) must be
one or a few orders of magnitude larger than the term
on the left-hand side. Thus, one is free, in the first
approximation, to drop-out the latter term altogether
and, consequently, to omit the left-hand side term in
the second equation in set (6) as well. This has been
done previously in ref. [11] and amounts to using
quasi-stationary forms of the transport equations
everywhere outside the test particle.

Ty o= T
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The inequality |s?| « 1 imposes a restriction from
above on the values of the characteristic frequency w
of a non-stationary heat transfer process which might
be investigated on the basis of continual cquations.
Retaining the term iw? in the heat conduction equa-
tion inside the test sphere (the first one in set (6))
means, at the same time, that the inequality

(i1 f) [T+ pleifeo—Dulf ' « 1 9)

has to be true in order that non-stationary dispersion
effects could be significant within the scope of a con-
tinual manner of the description of unsteady heat
transport. For example, it is usually satisfied with
good accuracy for granular beds infiltrated with a gas.
When inequality (9) is not fulfilled, the unsteady terms
of all the heat conduction equations must be taken
into account. In this case the role played by relaxation
effects outside the test particle is comparable with
or even is greater than that of relaxation inside this
particle.

In compliance with a general method discussed in
refs. {10, 11], one has to introduce perturbations t*
and 17* of the mean temperature field conditioned by
the presence of the test sphere as compared with the
unconditional one. This gives

7(R|R") = t(R) + *(X|R"),

q(RIR") = —AVTt—AVT*, X > 14y
(R|R) = t(R)+7*(X|R"),
¢ RIR) = —AVT—4,VT™*, 1 <X < 147.
(10)

Then the test particle problem is to be formulated in
the form

wt=A1, 0<X<l;
At* =0, I<X<l+y; At*=0, X>1+y
T=1+7* AnVi+inVr'* X=1
¥ =1*  AenVi™* = inVr*, X =14y

™0, Xow, T<ow, X=0 (11)
n denoting the unit external normal vector on the test
sphere surface. The mean temperature 7{(R) can be
expressed in the vicinity of the point R” as a Taylor
expansion, that is, as a series in degrees of X,. A
sufficient accuracy can be shown to be provided for
in the case under study if only two terms of such a

series are retained. Hence
E° = Vi(R")
(12)

o(R) = t°+E°X, t° = t(R’),

both t° and E® being regarded as constant quantities.
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3. SOLUTION OF THE TEST PARTICLE
PROBLEM AND EQUATIONS OF SELF-
CONSISTENCY

Solutions of the problem expressed by cquations
(11) can be sought in the form of expansions in spheri-
cal functions. By confining the discussion to the level
of accuracy specific to the approximate representation
of equations (12), only two terms of any such cxpan-
sion have to be accounted for. After a simple cal-
culation this yields. in particular

7= [T[)Cnllxz(}’)Pn+EOC|13g2(J")P1].V ER
¥y = X(iw)"? (13)

Iy;2(y) being the Bessel functions of an imaginary
argument and P, and P, denoting the Legendre poly-
nomials, P, = 1 and P, = E°X/E’X. The coefficients
C, are equal to

Co = (n/2)"? sh '(im)'"?
x {14iwa(1+ BB +1)] ' F}
C, = 3(n/2)" sh™ (i) "2[2(B2+ NG — 1)
+BG+DH2ACRE+1)— 1 +BIF
+a(3—2F)[GB+1)+2—28]}

i) "2

(14
where a function and parameters are brought forward
F = 3(iw)” "[(iw)"? cth (iw)"* —1],
=4/ G=(1+7)".

Now the integration in set (5) can be carried out.
The result is

J VeI(R|R") dR’
X< |

wx(l +By)

= ;‘nEO{(F—l)[I +

2h
R+ G- 1)
+BG+A]QIGRE+ 1) — 1+ ]

+a(3/F-2)[GR2B+ l)+2—2ﬂ])'},

J‘ ArT(RIR) dR’
X< |

iwo(1+ py)
3p(1+%)

F:| ; (15)

By substituting equations (15) into the definitions
of q and A in set (5), one obtains formulae which must
be compared with those in set (7). This yields the
following algebraic equations reflecting the self-con-
sistency requirement

p= Fl1+iwa(l+ O F/3BA+0)]~

= ‘;‘moin[l +
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iwa(l+ By) F} !
3p(1+y)

+2(B*+ D(G—D+ G+ H]2IGRE+1) —14+f]

[3=1+(a——1)p{(F—1) [1+

+a(3/F—2)[G(2ﬂ+1)+2——2ﬁ])"‘}. (16)

The second equation serves to find § as a function
of other parameters whereas the first one determines
u. Both p and u depend not only on the ratio « of the
heat conductivities of the materials of the phases, the
volume concentration p of the dispersed phase and the
structural parameter y, but also on the dimensionless
frequency w, and just this reveals the physical origin
of the dispersion effects influencing non-stationary
heat transport. For real unsteady processes, the
characteristic values of @ (measured, in accord with
equations (3), in units of the dimensional frequency
k,/a”) are ordinarily small enough compared with
unity. This gives an opportunity to seek a solution of
equations (16) in the form of series in degrees of iw.
Below attention is confined only to the first two terms
of these series. By means of using

(0)

B =0 —imf V-, — oM -

amn

in equations (16), while expanding these equations
into series in degrees of iw, it can be straightforwardly
obtained

p=p

ﬁ(o) =l+p(a—1M /N,
B = p(a—1)(1/15+M,N,/N?)
x[l+pla—1)(M,N,—M,N)/N3]™!

=1, pV=115+a(1+pODBFO1+p]"!
(18)

where the quantities

M, = Q2B +2)(G—1D+LO(5G+4)

M, = 4NG-1)+5G+4

Ny =22 +1)G—2424

+a[(2B + 1)G+2 -2
Ny = 2(142G) +2u(G—1)
Ny = (/5[ +1)G+2—27] (19)

are introduced.

The coefficient f'” determines, in fact, the dimen-
sionless effective heat conductivity of the granular
medium in stationary circumstances which have been
studied extensively in ref. [10]. It can be used to find
a value of the empirical dimensionless thickness y, of
the concentric layer around the test sphere by com-
paring the formula in set (18) with either more strict
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FiG. 1. Effective dimensionless heat conductivity as a func-
tion of o at p = 0.6 and different y (figures on the curves);
points, experiments of ref. {12].

theoretical relations or experimental data. In Fig. 1
curves characterizing the dependence of ” on « at
different y are presented along with experimental
results of ref. [12]. Unfortunately, the comparison
does not appear to be sufficiently conclusive, sup-
posedly for the effect of contact conductivity between
touching particles having been not excluded in the
experiments with polydisperse systems performed in
ref. [12]. However, a rough evaluation gives
0.1 < x < 0.4. To get a more convincing result appli-
cable to randomly packed monodisperse mixtures
with spherical particles, one is able to turn to exper-
iments on the electric conductivity of emulsions in ref.
{13] used quite successfully while checking the theory
advanced in ref. [10]. Theoretical curves f‘”(p) are
drawn in Fig. 2 for different ¢ and two values at . It
can be easily seen that the experimental points fall
close to the curves corresponding to y~ 0.3 at
both values of a. Characteristic dependences of §”
upon p at o = 100 and « = 0.1 and various i are also
shown in Fig. 3.

Through carrying out the inverse Fourier transform
and returning to the original dimensional independent
variables with the help of set (3), the first equations
in sets (7) and (17) yield a relation characterizing the
relaxation of the heat flux in unsteady processes

q= (] - Tqa/at)qsa
g = —A V= —BO),Vr,

Ty = (BV/B) @’k ). (20)

Here q. is a quasi-stationary heat flux corresponding
to a given instantaneous value of the mean tem-
perature gradient and T, is the specific relaxation
time.

The second and the third equations in set (8) yield
with the former accuracy (the equality p® =1 is
allowed for)

1 = [I—iw(l-p)~ 4], 2n
It reads, in the original variables
1y =(1=T8/0t,, T, =p"(1—p)”'(a’/x\)

(22)
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{a)

FiG. 2. Theoretical dependence of §' on p at different y and
o = 15.7 (a) and 100 (b) ; points, experiments of ref. [13].
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FiG. 3. Dependence of ' on p at different ¢ (figures on the
curves), a = 100 (a) and 0.1 (b).
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FiG. 4. Dimensionless relaxation time ¢, = T,/a" as a func-
tion of p at different y, @ = 100 (a) and 0.1 (b).

T, being another relaxation time. This equation
describes the relaxation of the mean temperature of
the dispersed phase to a given value of that of the
continuous one.

A relaxation relation for the mean interphase heat
exchange can be obtained easily as well. It follows
from equations (8) and (17) after a simple manipu-
lation and allowing for equation (7) that

To—1, = fop"(1—p) 't (23)
which gives in the original variables
h=—a=—k(1—T,3/80(tq—11)
k.= —p(1—p)i,/u"a®, T, =pVa’jx,.
(24)

Equations (20}, (22) and (24) are rigorous within
the limits of their accuracy and, thus, make unnecess-
ary supplementary assumptions concerning the relax-
ation of relevant quantities in unsteady heat transfer
processes. 1t is worth noting that they are somewhat
different from those usually postulated on an empiri-
cal basis.

The dependence of dimensionless relaxation times
i, T/a? on p is illustrated in Figs. 4 and 5 at various
x for « = 100 and « = 0.1. These figures supplement
the information presented in Fig. 3.
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FIG. 5. Dependence of t, = «,T./a? and #, = x,T,/a’ on p
(solid and dashed curves, respectively) at different y, & = 100
(a) and 0.1 (b).

4. CONTINUAL DESCRIPTION OF NON-
STATIONARY HEAT TRANSFER

Let us collect together all the conclusions bearing
upon the averaged field equations governing unsteady
heat transport processes. From equations (1), (20)
and (24) a complete set of heat conservation equations
and of constitutive relaxation relations is obtained

co&(0/0t+v V)1, = —Vq+h
, p(0/0t+v V)t = —h, ©=c¢e1,+pT,
q= —A(1-T,0/0D)Vr,
h=—k(1-T,0/00)(ty—1,) (25)

the relaxation times T, and T, the effective stationary
heat conductivity 4; = 8“4, and the quasi-stationary
heat exchange coefficient & being defined by equations
(18), (20) and (24) and in Figs. 3-5. Only set (29)
must be used while dealing with non-stationary heat
transfer subject to certain conditions imposed above.

It is also expedient to consider simplified methods
of the description of heat transport under unsteady
conditions. By using an operational expansion, one is
able to rewrite the relaxation relation (20) for the
mean heat flux with the same accuracy as

g = — AVt = (1—T,0/00)" 'q= (1+T,8/d0)q.
(26)

Such a relation has been suggested before as a hypoth-
esis [14]. If both phases of a granular medium are at
rest (vo=v, =0) and one does not distinguish
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between the temperatures 7,4, 7, and 7, then summing
up the conservation equations in set (25) yields

c0t/ot = —Vq, ¢ =¢ecyo+pc,. 27)

Hence, and from equation (26), one gets a hyperbolic
equation

c(8c/ot+ T,0%t)or%) = AAt. (28)

This equation is obviously erroneous and cannot
be used to characterize unsteady transfer processes
since it is incorrect to neglect a similar term of the
same order of magnitude in the expression for 4 while
taking into account the relaxation term in the
expression for q.

A proper approximate equation for the mean tem-
perature of a motionless granular medium can be
derived in the following manner. Firstly, through
expanding in degrees of iw and taking into account
equation (17), one gets from set (8)

BOAT = iw(x, fxo)[1+plei/co— 1) —iwH]
H=pu"(c,/co—1)
= (BB +p(er/co—D)]-

Applying the inverse Fourier transform and passing
to variables in equations (3) results in an equation

c(0t/0t—T,0%t)0r?) = AAr, T, = H(c,/c)(a?/k\)
(30)

the thermal capacity ¢ per unit volume of the medium
on the whole being expressed in equations (27). The
effective relaxation time T, is illustrated as a function
or p, x and « in Fig. 6.

(29)

(a)

3

8x10° |- 1
47

0.3
4x10° -

0.1

| X=0.01
0

160

te

80

FiG. 6. Effective dimensionless relaxation time ¢, = k, T,/a?
as a function of p at different y, & = 100 (a) and 0.1 (b).
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FiG. 7. Dependence of parameter 4 on « at p =0.6 and
different y (figures on the curves).

As T, is always positive, equation (30), which is to
be substituted for equations (28), belongs to the ellip-
tic type. For the first time a single ‘equivalent’ equa-
tion to describe heat extraction from geothermal res-
ervoirs was obtained in ref. {15] for a simple case
when heat conduction is completely neglected and the
convective heat transport with an infiltrating fluid is
only significant. Later on, such equations have been
derived and studied in refs. [16, 17].

[t is instructive to deduce from the above con-
sideration a set of equations for the phase tempera-
tures, 7, and t,, similar to equations (1). With this
purpose in view, equations (8) will be somewhat
rearranged with the help of equations (17) and, as
before, only the terms of the zeroth and the first-order
in iw will be retained. This yields

Aty = (M/K;)[iwa/ﬁ“)) + (C|/’C0)(ﬂ5//}(m)(fn =1)]
(31

Hence, after using the inverse Fourier transform and
returning to the dimensional variables, one obtains
for motionless granular media

e(to—1,) = iop ",

€o80T0/0t = A ATy — (AofdaD) A (To—1))
¢ p8T, /01 = (Ao/4a™) A% (1, — 7))
A = 12pe[1[5a+ (1 + OB+

These equations conform with those in set (1) at
v, = v, = 0, if A* involved in the expressions for q and
for ¢ is understood as 4, and %, respectively, and
A4? is defined in accordance with the formula in set
(32). The dependence of 4 upon y at « = 100 and
a = 0.1 for granular beds (p = 0.6) is presented in
Fig. 7. It can be seen that the value 4 = 2 supposed
in ref. [3] represents a certain approximation to actual
values of 4.

Equations {26)—(32) are derived with reference to
media at rest. However, they can be reasonably
assigned to a granular medium in motion being con-
sidered in the coordinate system connected with its
dispersed phase. Then an additional convective term
coe(vo—v,)Vz must be included in the left-hand side
of equations (30) or a term cye(vy,—v,)V7, in the first

32)
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cquation in set (32). The transformation to the lab-
oratory coordinate system can be performed casily
and, for instance, reduces the equations in sct (32) 1o
the form of those in set (1).

Let us conclude this section with an indication that
approximate cqualities

f=1, pu=x0 {33)

follow from equations (16) within a region of small
time scales (w > 1). Although the apphcability of the
scheme developed above to such a region is ques-
tionable, to say the least, equation (33) outlines the
essential features of a high-frequency transfer process
in the right way. Namely, the particles have not
enough time to absorb a considerable amount of heat
and do not affect appreciably heal conduction which
is run mainly through the continuous phase. Note
that set (32) happens to lead to the right asymptotic
behaviour at small times if one presumes additionally
that £, = 4,.

It must be stressed once more that a prercquisite
for continual methods to be applicable for describing
non-stationary heat transfer in disperse and hetero-
geneous media consists in a presumption that a
characteristic linear scale of the mean temperature
field is much larger than a scale of the inner structure
of the medium, L >» a. This leads also. as shown
above, to a conclusion that s in equations (8) as well
as the left-hand sides of equations are required to be
small as compared with unity. The latter condition
does not actually hold at the initial stages of many
processes, such as heating of a granular bed through
a flat boundary, and one has to be aware of the fact
while dealing with these stages. Nevertheless, one suc-
ceeds sometimes in attaining fair conformity with
experiments even during such a stage [3, 18, 19}, which
seems to be due to occastonal reasons and, in particu-
lar, to the fact that the approximate equations in sel
(32) yield correct asymptotics at small times.

5. CONCLUSIONS

The main achievement of this paper consists in a
strict derivation of a closed set of both heat con-
servation and constitutive equations governing non-
stationary heat transport within the field of the con-
tinual mechanics and physics. The procedure
developed gives an opportunity to point out different
approximate methods of rough description of
unsteady transfer processes which could be of use in
various situations. This enables one also to estimate
critically the adequacy of phenomenological
approaches proposed and used previously and to give
an account of the conditions under which these might
be successful when applied to particular problems.
The most important inference concerns the fact that,
whereas the conservation equations are principally of
the same basic form as those postulated within such
approaches, the constitutive equations happen to be
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quite different from their versions suggested to
describe relaxation processes and various dispersion
effects on an empirical basis. This is of particular
concern because, as it is evidenced by the above,
the form of relaxation relations is able to affect the
very type of differential equations called to circum-
scribe the essential features of unsteady transfer
processes.

While dealing with the method developed and, in
particular, when trying to extend it to other problems,
one should distinguish between the rigorism of the
general mathematical technique employed as a foun-
dation and the approximate nature of supplementary
assumptions being used within the frames of this tech-
nique to simplify the necessary calculations. Two lead-
ing assumptions of this kind are to be especially
stressed. The first one pertains to the character of
relaxation processes progressing in a real granular
medium. The thermal inertia of particles has been
actually presumed to exceed considerably that of the
ambient matrix, and this imposes evident restrictions
on the type of media the above analysis is to be applied
to. A generalization to a broader range of granular
systems does not meet with principal obstacles and
amounts to taking into account non-stationary terms
of heat conduction equations not only inside the test
sphere but also in its exterior. Such a generalization
may constitute one of the possible directions of future
work.

The second assumption has relevance to the short-
range order in the packing of particles. Its point con-
sists in the introduction of a layer filled with pore
material of continuous phase so that solving the test
particle problem becomes much simpler. If randomly
packed granular media are kept in mind, the assump-
tion can be avoided by means of using an appropriate
representation for the binary correlation function
when formulating the problem in compliance with ref.
[10]. This is not so simple, however, for polydisperse
systems of particles of an irregular shape and for
heterogeneous media of another inner structure. In
such cases a satisfactory approximation for the vol-
ume concentration of the dispersed phase near any
chosen particle is absent and the concept of a layer of
pure ambient medium separating their surfaces from
a system with uniform properties is, in fact, the only
conceivable and quite natural because of not only its
simplicity but also for lack of positive knowledge
about the features of the short-range order in the
packing of the particles. This is the reason why curves
corresponding to different y are drawn along with
those for x = 0.3 in the above figures. One expects
large values of ¢ to be representative of loosely-packed
beds of irregular particles whereas low ones play a role
when treating heterogeneous systems such as dense-
packed polydisperse beds, fractured porous bodies,
etc.

As a final remark, we claim all the equations derived
to be applicable to non-stationary transport of some
other scalar quantities. This statement seems trivial

2443

when diffusive transport of an admixture in a granular
system is in question. Then one has to put ¢, and ¢,
to be identically equal to zero and to substitute A,
and A, by diffusivities of the admixture in materials
of the phases of the medium. The statement is not
so obvious, however, when filtration processes in
macroscopically heterogeneous porous media are in-
volved. As a matter of fact, in this case the role of tem-
perature is played by the fluid pressure in fractures
and within porous lumps divided by them and
pressure conductivity coefficients replace those of
heat conductivity. Dispersion and relaxation
phenomena are especially significant in this context
since time scales of the relaxation be up to several
hours or days.
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TRANSFERT THERMIQUE INSTATIONNAIRE ET EFFET DE LA DISPERSION DANS
LES MILIEUX POREUX

Résumé—On considére le transfert thermique instationnaire dans un mélange particulaire macro-
scopiquement isotrope et homogéne, & partir d’une approche générale basée sur la moyenne des équations
de conduction thermique locale, valables dans les mélanges de phases, pour un ensemble configurationnel
de particules, et basé¢ aussi sur la théorie du champ self-consistant. Un systéme d’équations pour les
températures moyennes des phases est obtenu en négligeant le transport direct de chaleur a travers les
contacts entre particules contigués. A la fois le flux thermique moyen et I'échange entre phases sont
essentiellement dépendants de la fréquence et la conductivité thermique effective s’écarte considérablement
de sa valeur stationnaire. Ceci est caractéristique des mécanismes de relaxation qui influencent le transfert
thermique instationnaire et générent des effets de dispersion. Dans U'instationnarité faible, le systéme peut
étre réduit 4 une seule équation “équivalente™ ou 4 un systéme de deux équations simplifiées dont la fiabilité
est discutée en détail sur 'exemple du chauffage d’un lit granulaire fixe 4 travers une frontiére planc.

INSTATIONARE WARMEUBERTRAGUNG UND DISPERSION IN SCHUTTUNGEN

Zusammenfassung-—Die instationdre Wirmeiibertragung in einem Gemisch aus makroskopisch isotropen
und homogenen Partikeln wird mit Hilfe einer allgemeinen Ndherungsmethode untersucht, die auf Gleich-
ungen fiir die mittlere &rtliche Wirmeiibertragung in Gemischphasen aus einer Gruppe von Partikeln
und auf der Vorstellung der selbstkonsistenten Feldtheorie basiert. Fiir die mittleren Temperaturen der
Phasen ergibt sich ein geschlossener Satz von Gleichungen unter Vernachlissigung der Wirme, die durch
den Kontakt benachbarter Partikeln direkt (ibertragen wird. Sowohl dic mittlere Wirmestromdichte als
auch der Austausch zwischen den Phasen erweist sich als stark frequenzbhéngig, weshalb die effektive
Wirmeleitfahigkeit betrdchtlich vom stationfiren Wert abweicht. Dies ist verantwortlich fiir Relaxa-
tionsprozesse, die ihrerseits Einflul auf die instationdre Wirmetibertragung ausiiben und entsprechende
Dispersionseffekte verursachen. Bei schwach instationdren Bedingungen lassen sich die Gleichungen
entweder zu einer einzelnen dquivalenten Gleichung von elliptischem Typ zusammenfassen oder zu
einem System aus zwei vereinfachten Gleichungen. Deren Giiltigkeit wurde bereits f{rither anhand eincs
Beispiels ausfihrlich diskutiert, bei dem eine ruhende Schiittung durch eine ebene Begrenzung beheizt wird.

HECTAITMOHAPHBIN TETUIONEPEHOC U DOOEKTHI JJUCIIEPCHH B
T'PAHYJIMPOBAHHBIX CPEJAX

Amsotaus—C NoMoOLWBIO 06IIEro MoaAxoAa, OCHOBAHHOIO HA OCPEIHEHHH YpaBHEHHH JIOKAJIBHOH Ten-
JIONPOBOJHOCTH, ONHACHIBAIOLIMX (Pa3bl cMecH B aHcaMbuie 4acTHI[ PA3JIMYHON reOMETPHM, H Ha MIesx
CaMOCOTIACOBAHHOMN TEOPHA MO, AHAM3NPYETCH HECTAUMOHAPHBIA TENJIONEPEHOC B MAKPOCKOIIMYECKH
H3OTPOTHOH ¥ OJHOPOAHOM CMECH Makpoyactull. BroiBemeHa cHCTeMa 3aMKHYTHIX ypaBHEHME suis
CcpenHux Temmepatyp (a3 B mpeneOpexeHud NPAMBIM TEILIONEPEHOCOM 4epe3 30HB KOHTAKTa YacTHIL
Tloxasano, 4To Kaxk cpeauui TeruioBoll MOTOK, Tak B MexgasHbH TenI006MeH CYIIECTBEHHO 3aBHCAT OT
4aCTOTHI, ¥TO BBIZKIBACT 3HAYMTE/ILHOE OTKIOHCHHE 3pdeKTHBHON TEINIONPOBOAHOCTH OT CTAUMOHAp-
HOTO 3HaYeHHd. Takoe NOBEACHHE XAPAKTEPHO JUIH IIPOLECCOB PENAKCAIMHE, BIUAIOIIMX HA HECTAUMOHAD-
Hbll TEMAONEPEHOC, ¥ PHBOAKT K COOTBETCTBYIOMIMM IHCHEPCHOHHBIM 3dextaM. B ycnomuax cnaboi
HECTALMOHAPHOCTH CHCTeMa ypaBHeHHH Moxer ObITh 16O cBeleHa K OOHOMY “IKBHBAJEHTHOMY ™
3JUTHATHYECKOMY YPABHEHHIO, JIHOO K CHCTEME IBYX YNPOLUEHHBIX YPABHEHMH, HaJEXKHOCTh KOTOPBIX
paccCMOTpEHA HETAILHO HA NpHMEPE HArpeBa HENOABHXHOIO I'PaHYJIHPOBAHHOTO CNOA Yepe3 ILIOCKYIO
IpaHHuLy.



